
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4657 265

Design of Parallel CRC Generation for

High Speed Application

Chaitali Tohgaonkar
1
, Prof. Sanjay B. Tembhurne

2
, Prof. Vipin S. Bhure

3

Electronics and Communication Engineering, GHREAT, RTMN University, Nagpur, India
1

Professor, Electronics and Communication Engineering, GHREAT, RTMN University, Nagpur, India
2,3

Abstract: A Cyclic Redundancy Check (CRC) is the remainder or residue of binary division of a potentially long

message, by a CRC polynomial. This technique is ubiquitously employed in communication and storage applications

due to its effectiveness at detecting errors and malicious tampering. The hardware implementation of a bit-wise CRC is

a simple linear feedback shift register. This means that „n‟ clock cycles will be required to calculate the CRC values for

an n-bit data stream. This project primarily focuses on error detection in the Ethernet applications. This paper presents

implementation of parallel Cyclic Redundancy Check (CRC) based upon DSP algorithms of pipelining, retiming and

unfolding. The architectures are first pipelined to reduce the iteration bond by using novel look-ahead techniques and

then unfolded and retimed to design high speed parallel circuits. The methodology to be employed with VHDL, Xilinx

ISE for simulation and test-bench verification.

Keywords: Cyclic Redundancy Check (CRC), Parallel Pipelining, LFSR, VHDL code.

I. INTRODUCTION

CRCs are based on the theory of cyclic error-correcting

codes. The use of systematic cyclic codes, which encode

messages by adding a fixed-length check value, for the

purpose of error detection in communication networks was

first proposed by W. Wesley Peterson in 1961. A CRC

(Cyclic Redundancy Check) is a popular error-detecting

code computed through binary polynomial division. To

generate a CRC, the sender treats binary data as a binary

polynomial and performs the modulo-2 division of the

polynomial by a standard generator (e.g., CRC-32). The

remainder of this division becomes the CRC of the data,

and it is attached to the original data and transmitted to the

receiver. Receiving the data and CRC, the receiver also

performs the modulo-2 division with the received data and

the same generator polynomial. Errors are detected by

comparing the computed CRC with the received one as

shown in fig. below.

Fig.1. Operation of CRC performed at sender and receiver

side.

The CRC algorithm only adds a small number of bits (32

bits in the case of CRC-32) to the message regardless of

the length of the original data, and shows good

performance in detecting a single error as well as an error

burst.

Fig.2. Example of CRC generation.

Cyclic redundancy check is commonly used in data

communication and other fields such as data storage, data

compression, as a vital method for dealing with data

errors. Usually, the hardware implementation of CRC

computations is based on the linear feedback shift registers

(LFSRs), which handle the data in a serial way. Though,

the serial calculation of the CRC codes cannot achieve a

high throughput. In contrast, parallel CRC calculation can

significantly increase the throughput of CRC

computations. For example, the throughput of the 32-bit

parallel calculation of CRC-32 can achieve several

gigabits per second. However, that is still not enough for

high speed application such as Ethernet networks. A

possible solution is to process more bits in parallel;

Variants of CRCs are used in applications like CRC-16

BISYNC protocols, CRC32 in Ethernet frame for error

detection, CRC8 in ATM, CRC-CCITT in X-25 protocol,

disc storage, SDLC and XMODEM.

The commonly used generator polynomial for Ethernet is

given by:

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4657 266

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7

+ x5 + x4 + x2 + x + 1

We will use this polynomial for all further calculations

involved.

II. SERIAL CRC

Traditional method for generating serial CRC is based on

linear feedback shift registers (LFSR). The main operation

of LFSR for CRC calculations is nothing more than the

binary divisions. Binary divisions generally can be

performed by a sequence of shifts and subtractions. Here

CRC checking is done serially. The data input will be

single (binary) and every clock pulse the data input will be

one.

The input message 256 bit is transmitted serially and it

passes through CRC-32 (generator polynomial, single

execution unit) and CRC is calculated.

Fig.3. Basic LFSR architecture.

It will take more time to calculate CRC. Therefore it has

high latency and low throughput. So, to overcome this

problem, we are using multiple parallel execution units.

III. PARALLEL CRC

There are different techniques for parallel CRC generation

given as follow.

1. A Table-Based Algorithm for Pipelined CRC

Calculation.

2. Fast CRC Update

3. F matrix based parallel CRC generation.

4.Unfolding, Retiming and pipelining Algorithm

Parallel processing used to increasing the throughput by

producing the no. of output same time. Retiming used to

increasing clock rate of circuit by reducing the

computation time of critical path. In fast CRC update

technique, it is not required to calculate CRC each time for

all the data bits, instead of that calculating CRC for only

those bits that are change. There are different approaches

to generate the parallel CRC having advantages and

disadvantages for each technique. Table based architecture

required pre-calculated LUT, so, it will not used for

generalized CRC, fast CRC update technique required

buffer to store the old CRC and data. In unfolding

architecture increases the no. of iteration bound.

The F matrix based architecture are more simple and low

complex.

A. Design Procedure

In this implementation, the data input will be 4 bits at one

clock pulse if the data input size will be increase so clock

pulse will be decreased. It will complete the result in lesser

clock pulse so it will be used for high performance.

The data 64 bit distributed into four blocks. Each consists

of 16 bit. Here, four execution units are used. They are

parallel pipelined with each other and four 32-bit

remainders are obtained. They are ex-or with each other

and got final CRC which is of 32-bit.

Fig.4. Shows CRC calculation using four parallel

execution units.

B. Verification and Simulation

In this part the test bench and simulation result will be

shown. In this the signals will be generated when the data

will be given to the input and the output will be shown.

And finally the simulation result will be displayed. The

simulation result is given below.

Fig.5. Simulation result of decoder.

C. Synthesis Report

Synthesis process will be done by using RTL Compiler

tool. The process will generate area report, power report,

timing report, clock generating report. The generated

output will be the net list file.

Both Serial and Parallel CRC Checker for Ethernet has

been designed and synthesized. Now the comparison will

be done between these two designs. The comparison will

be done for the simulation results, area and timing.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4657 267

Fig.6. Device utilization summary.

Fig.7. Timing summary.

IV. LITERATURE REVIEW

[1] Hitesh H. Mathukiya; Naresh M. Patel; “A Novel

Approach for Parallel CRC generation for high speed

application”. In this paper, the parallel CRC generation

deal with 64bit parallel processing based on built in F

matrix with order of generator polynomial is 32. This

gives CRC with half number of cycles. It drastically

reduces computation time to 50% and same time increases

the throughput. The no. of LUT get increased, so area also

get increase.

[2] Yan Sun; Min Sik Kim; "A Pipelined CRC Calculation

Using Lookup Tables". In this paper, they present a fast

cyclic redundancy check (CRC) algorithm that performs

CRC computation for an arbitrary length of message. This

paper proposes a table-based hardware architecture for

calculating CRC by taking advantage of CRC‟s properties

and pipelining the feedback loop. It achieves considerably

higher throughput than existing serial or byte-wise lookup

CRC algorithms. With delay increase in the critical path.

[3] Weidong Lu and Stephan Wong, “A Fast CRC Update

Implementation”, IEEE Workshop on High Performance

Switching and Routing Oct. 2003.In this paper, they

presented a novel method to update the CRC code when

packets are passing through interconnecting devices. And

focus on the CRC calculation that is performed during the

routing of the Ethernet packets be encapsulating the

packets into Ethernet frames, adding a frame header and

adding a frame trailer. It calculates the intermediate results

of the changed fields based on the parallel CRC

calculation and performs a single step update afterwards.

And the number of cycles is dramatically reduced.

The fast CRC update only calculates the changed portion

of a frame.

[4] Campobello, G.; Patane, G.; Russo, M.; "Parallel CRC

realization”. This paper presents a theoretical result in the

context of realizing high speed hardware for parallel CRC

checksums. The number of bits processed in parallel can

be different from the degree of the polynomial generator.

Presented Pre-calculated F-matrix based 32 bit parallel

processing. Which is faster and more compact and is

independent of the technology used in its realization. But

it doesn‟t work if polynomial change.

V. CONCLUSION

From all the analysis of both Serial and Parallel

implementation of CRC Checker, it has been concluded

that Parallel CRC Checker for Ethernet is of high speed

and high performance Checker. Pipelining has decreased

the iteration bound of the architecture effectively. This

paper shows the use of Parallel CRC for high speed

application such as Ethernet. Proposed design (32 bits)

reduces the computation time and also reduces the no. of

slices used. So applying pipelining to the CRC has

increased the throughput to achieve high speed design.

ACKNOWLEDGEMENT

We would like to extend my gratitude & sincere thanks to

my supervisors Professor, coordinator and HOD of

department of Electronics and communication

Engineering, for there constant motivation and support

during the course of our work.

REFERENCES
[1] Hitesh H. Mathukiya and Naresh M. Patel; “A Novel Approach for

Parallel CRC generation for high speed application,” 2012 IEEE DOI.

[2] Y. Sun and M. S. Kim; “A table-based algorithm for pipelined CRC

calculation,” in Proceedings of IEEE International Conference on

Communications, May 2010.‟
[3] G. Campobello, G. Patane, and M. Russo; “Parallel CRC realization,”

IEEE Transactions on Computers, Oct. 2003.

[4] C. Cheng and K. K. Parhi; “High-speed parallel CRC implementation
based on unfolding, pipelining, and retiming,” IEEE Transactions

on Circuits and Systems, Oct.2006.

[5] Weidong Lu and Stephan Wong, “A Fast CRC Update
Implementation”, IEEE Workshop on High Performance Switching

and Routing, Oct. 2003.

[6] W. Jiang and V. K. Prasanna “A memory balanced linear pipeline
architecture for trie based IP lookup”. 2007.

[7] Sonali Selokar and P. H. Rangaree; “Design and implementation of

CRC code generator based on parallel execution method for high

speed wireless LAN”.

[8] Deepti Rani Mahankuda and M. Suresh; “A high performance CRC

checker for Ethernet application”.

[9] J. S. Chitode “Data communication” coding technique.
[10] Indu I and Manu T. S. “Cyclic redundancy check generation using

multiple lookup table algorithms”.

[11] Martin Grymel and Steve B. Furber, “A Novel Programmable
Parallel CRC Circuits” IEEE transactions, 2011.

[12] Chao Cheng and K. Parhi, “High Speed Parallel CRC
implementation based on Unfolding, Pipelining and retiming”,

IEEE transaction October 2006.

[13] Rameshwar Murade, MD Manan Mujahid, M.A.M. Sabir, “The
design and implementation of a Programmable CRC computation

circuit architecture using FPGA” 2013.

[14] Adrian Simionescu, “CRC Tool Computing CRC in Parallel for Ethernet”.

[15] Sprachmann, M. , "Automatic generation of parallel CRC circuits,"

Design & Test of Computers, IEEE, May 2001.

[16] Tenkasi V. Ramabadran and Sunil S. Gaitonde “Tutorial on CRC
Generation” Iowa State University, IEEE Micro.

